Proceedings of the 1st International

CONFERENCE ON PRESSURE SURGES

Canterbury England

1972

1831 1402

Published by

Edited by H.S.Stephens and M.J.Rowat

The organisers are not responsible for statements or opinions made in the discussion recorded in these proceedings.

1. 1. 1.

Papers in the proceedings were reproduced from the authors' original typescript to minimise delay.

nie nie nie

When citing papers from these proceedings, the following reference may be used: Proc. Int. Conf. Pressure Surges (Canterbury) Paper pp - . BHRA Fluid Engineering. (September, 1972).

©BHRA Copyright 1973

Published and printed by:

BHRA Fluid Engineering CRANFIELD, BEDFORD, ENGLAND Tel: Cranfield 422 Telex 825059

PRESSURE SURGES

This International Conference on Pressure Surges was sponsored and organised by BHRA Fluid Engineering, in conjunction with The City University London, and was held at Rutherford College, University of Kent at Canterbury, England 6-8th September, 1972.

These proceedings contain the papers presented at the Conference together with a record of the Oral Discussion and Written Contributions, Name and Subject Indexes and a List of Delegates.

Acknowledgements

The valuable assistance of the following persons in the successful organisation of this Conference is gratefully acknowledged:

Dr. K. J. Enever, The City University, London. J. A. Fox, University of Leeds, Dr. J. A. Swaffield, Polytechnic of the South Bank, London A. R. D. Thorley, The City University, London

The editors especially wish to thank Stephen Schofield of the BHRA staff for his assistance in the preparation of these proceedings.

17

OPENING ADDRESS

It is a great honour to be asked by the BHRA to welcome you to this Meeting and to declare the Conference open. An undeserved honour - I was never (to use a hydrodynamic simile) on the glistening crest of the wave of progress, and am now an almost stationary particle in the dim region behind and below it.

When the Queen of Sheba heard of the fame of Solomon, she came to prove him with hard questions. Solomon told her all her questions - there was not anything hid from the King which he told her not. And when the Queen had seen all Solomon's wisdom, there was no more spirit in her.

I felt a bit like the Queen when I had tried to read - and here and there to understand - the wealth of papers submitted to this meeting. But I have enough spirit left in me to make me very grate-ful to the Authors, and to look forward with much interest to the elucidations and the discussions of the next two or three days.

One thing that struck me on reading the papers was that in so many of them space was devoted to the "peptinisation" of the information to be fed to a computer to make it digestible by the monster - and digestible, moreover in a minimum of computer-time. Could the Conference perhaps do something to reduce the resulting repetition?

Having recently been concerned in the study of the intermittent pumping of undigested gassy sewage sludge along long mains, I was specially interested in papers dealing with the analysis of the effects of varying bulk-elasticity (mainly resulting from varying pressures). Incidentally, the "softness" of sludge has, of course, the merit of cushioning surge or collision pressures, also of facilitating the starting-up of an idle column in a long pipe - the near end of which will often be up to speed before the outlet knows anything of what is coming. On the other hand, a measure of surge is, at starting, actually advantageous in breaking down, in the Bingham plastic, or pseudo-plastic, fluid, any initial shearstrength. But an impeller pump will usually impose sufficient surge, and the frequent preference for positive pumps is probably not justified, at any rate on this account.

Your time can be spent far more profitably than in listening to me. So, having congratulated the BHRA on having attracted such a galaxy of Hydrodynamicians and presented - so beautifully produced such a range of Papers, I will sit down and allow your serious proceedings to start.

HR Lapton

Hugh R. Lupton O.B.E., M.C., M.A., F.I.C.E., F.I.Mech.E., M.I.E.E., Hon. M.I.W.E., M.Cons.E., Consulting Engineer.

Proceedings of the 1st International Conference on Pressure Surges

CONTENTS

OPENING A	DDRESS	
	by Hugh R. Lupton	V
SESSION A:	COMPUTING METHODS	
— A1	Numerical methods for calculation of transient flow. V. L. Streeter, University of Michigan, U. S. A.	A1-1
A2	Analysis on simulating pipeline transient flow by computer. J. Zaoui and J. P. Recoura, S. O. G. R. E. A. H., France	A2-13
A3	Determination of pump characteristics for a computerised pump transient analysis. G.O. Thomas, U.S. Bureau of Reclamation	A3-21
A4	Economic methods for modeling hydraulic transient simulation. M.Kaplan, C. Belonogoff and R. C. Wentworth, Pacific International Computing Corporation, U.S.A.	A4-33
A5	Non-wave, approximate analysis of pressure surges. M. Macagno and E.O. Macagno, Iowa Institute of Hydraulic Research, U.S.A.	A5-39
A6	The accuracy of certain numerical procedures where applied to the solution of ordinary differential equations of the type used in the digital computer prediction of mass oscillation in closed conduits. J. B. B. Bullough and J. F. Robbie, University of Aberdeen, U.K.	A6-53
A7	What to hope from analytical methods for solving pressure surge problems. C. Thirriot, Institut National Polytechnic de Toulouse, France.	A7-77
Discussion a	nd contributions	A-105
SESSION B:	ANALYSIS OF PIPE SYSTEMS	
Bl	Pressure transients in pipe networks - a computer solution. J. A. Fox, University of Leeds, U.K.	B1-1
B2	Analysis of water hammer in complex pipe systems. C.J.Apelt, University of Queensland, Australia.	B2-11
B3	The build-up from rest of some non-Newtonian flows. R.K.Duggins, University of Nottingham, U.K.	B3-21
B4	Oil hammer and transient response in oil pipeline . T. Ichikawa, Shizuoka University, Japan and K. Yamaguchi, Toyota Technical College, Japan.	B4-29
В5	An analagous treatment of wave propagation in liquid filled elastic tubes and gas-filled rigid tubes. J. Lorenz and H. Zeller, Aerodynamisches Institut der Rheinisch- Westfälischen Technischen Hochschule, Aachen, German Federal Republic.	B5-45
B6	Surge analysis of a water transmission system. H. Eriksen, Camp, Dresser & McKee, Inc., U.S.A.	B6-61
B7	Water hammer protection of low-head conduits and networks by air chambers with natural air content. K. Haindl, Water Research Institute, Czechoslovakia.	B7-77
Discussion an	ad contributions	B-89

SESSION C:	TWO PHASE FLOW AND SEPARATION	
_ C1	Surge pressures in a gas-liquid mixture with a low gas content. K.J.Enever, The City University, U.K.	C1-1
C2	Column separation in an aircraft fuel system . J. A. Swaffield, Polytechnic of the South Bank, London, U.K.	C2-13
C3	Two phase flow in long vertical pipes. P. P. Vaidyaraman, Central Water and Power Research Station, Poona, India and A. G. Anderson, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, U.S.A.	C3-29
C4	The effect of free gas on cavitation in pipelines induced by water hammer. C.Kranenburg, Delft University of Technology, The Netherlands.	C4-41
C5	Digital computations for water hammer-column separation. H. Safwat and J. P. de Kluyver, Delft University of Technology, The Netherlands.	C5-53
Discuss	ion and contributions	C-69

SESSION D: COOLING WATER SYSTEMS

.

D1	Computer analysis of waterhammer in power station cooling water systems. T. J. Sheer, Electricity Supply Commission of South Africa.		D1-1
D2	Experimental study of pressure surges in condenser cooling water systems. H. Safwat, Delft University of Technology, The Netherlands.		D2-17
D3	Transient with column separation in cooling water systems for steam-power plants. A. Atzeni, C. Cao and E. Piga, Universita di Cagliari, Italy.		D3-33
Discuss	tion and contributions		D-53
		÷	

SESSION E:	HYDROELECTRIC SCHEMES AND OTHER SURGE TANK PROBLEMS	
E1	Method of characteristics applied to calculation of surge tank oscillations. C.S. Martin, Georgia Institute of Technology, U.S.A.	E1-1
E2	Computer aided design of surge chambers in pumped storage conduit systems. J.F.Robbie and F.M.Robson, University of Aberdeen, U.K.	E2-13
E3	The analysis and computation of steam surge tank pressure transients. D. J. Gorman and R. K. Gupta, University of Ottawa, Canada.	E3-37
E4	Analysis and prototype verification of hydraulic transients in Jordan River Power Plant. E. A. Portfors and M. H. Chaudhry, International Power and Engineering Consultants, Canada.	E4-57
E5	Surge problems of the Hydro-Electric Commission of Tasmania. P. T. A. Griffiths, Hydro-Electric Commission of Tasmania.	E5-73
E6	Some aspects of the multiple surge tank problems on the Southern Tunnel Main. J. V. Levy, Metropolitan Water Board, U.K.	E6-83
Discuss	ion and contributions	E-93

CLOSING SPEECH

Professor V. L. Streeter, University of Michigan, U.S.A.

The basic tools of transient analysis are now quite widely understood; although graphical analysis is in use in many engineering offices, the thrust of research papers is toward better mathematical simulations using the digital computer. Six years ago, in an international research conference on surge in England, more than half of the papers dealt with graphical analysis. The math model has developed rapidly and has replaced the physical model in many one-dimensional applications. The two- and threedimensional problems remain almost completely in the physical simulation field as they are too difficult for analytical models.

Acoustic velocity prediction is our greatest problem in math models of transient flow. The reduction of pressure in a system by a transient, even when vapour pressure is not encountered, causes a large reduction in wave speed. Both maximum and minimum pressures are affected. To complicate the situation the wave speed is a function of both pressure and time. Air and other gases come out of solution and reduce wave speed when pressure is lowered, but the bubbles return back into solution at a lower rate. When vapour pressures are encountered a greater reduction in wave speeds takes place.

One must conclude from this conference that the trend in transient analysis is toward the use of the method of characteristics. An important problem arises in its use with systems having more than one pipe, and that is the satisfying of the Courant condition. It can be very serious for large interpolations. Other methods available include use of implicit reaches, which complicate programming, adjustment of wave speeds, or use of small incompressible reaches, referred to as "lumping". Some adjustment of wave speed seems reasonable, as it is not accurately known in most situations. When this is not adequate, lumping in such a way that the expression appears similar to a characteristic equation may also be used; these methods provide no complications in programming.

In this conference the paper by Kaplan, Belonogoff and Wentworth suggests a novel method they call "zooming", which has not been adequately tested at this time.

Of the thirty-seven papers presented, eleven dealt with special project simulations covering a wide range of applications. Each one cannot be discussed, but the work of P.T.A. Griffiths was especially interesting in that the study was very thorough and comprehensive, including electrical transients, governor characteristics, relief valves to control resonance conditions, air effects and open channel flow. The two papers by R.Svee and H. Brekke on compressed air surge chambers were also very significant.

Five papers were presented which used the impedance, or linear analysis, for steady-oscillatory flow cases. The paper by T. Ichikawa and K. Yamaguchi also dealt with a transient problem. Much can be learned from these methods, and with a computer program which is less costly to execute than with the characteristics method. This method is also subject to error if improper wave speeds are used.

Five papers were devoted to two-phase flow resulting from column separation. This is an important field that needs this research concentration. Prototype measurements of acoustic speeds during severe transients are required before this problem can be adequately handled in a math model.

Four papers dealt with incompressible analysis. In some cases they are more complicated than the compressible analysis and require use of the digital computer for results. The paper by M. Macagno and E. O. Macagno may provide help in the "lumping" of small reaches for the characteristics method.

Three papers were concerned with the method of characteristics. This small number of papers indicates that it is generally accepted and interest has turned to its applications.

There were also three papers describing "general" programs, i.e. programs which endeavour to solve any and all transient flow cases by properly imputing of the data. Large companies strongly endorse this approach, in part so that non-programmers may use the programs with limited transient understanding and so that the program is still easily used with changes in personnel. Compromises have to be made with these programs, with the actual case being adjusted to fit the program. The general approach, with its sorting and indexing is also more expensive to load and execute. Both special simulations and general programs will be used in the future.

Six papers dealt with a separate topic: numerical accuracy, non-Newtonian flow, visco-elastic flow, valve stroking, physical modelling, and pump characteristics interpolation.

To sum up the three basic problems requiring more attention are:

1. Acoustic speed determinations and predictions of acoustic speed during a transient.

2. Understanding of the basic physics of column separation, and

3. The handling of short reaches of pipe that do not satisfy the Courant condition $\Delta x = a \Delta t$

100 Mar 100

On behalf of the conference attendees I would like to thank Mr. Young, Mr. Stephens, Mr. Rowat and the other staff members of BHRA for the great efforts they expended in preparing for and carrying out this excellent conference.

SUBJECT INDEX

AIR CHAMBERS	
air behaviour in	F2-15
air cushions, in	B7-80
	F2-13
attenuation, in	F 4-10
frequency modulators	
model tests	G5-67
latent heat effects	F2-17
natural air content	B7-79
pressure losses	B7-82
rational heat transfer	F2-15
semipneumatic tanks	B7-79
temperature effects	F2-16
*	1 2 - 10
AIRCRAFT FUEL SYSTEMS	~ ~ ~ ~ ~
column separation in	C2-16
Concorde main transfer system	C2-17
Concorde refuelling system	C2-17
AIR CUSHIONS	
	D
air chambers, in	B7-80
surge tanks, in	G2-17
	G3-30
AITKEN-NEVILLE INTERPOLATION	
	710 10
TECHNIQUE	E2-19
APALACHIA DIFFERENTIAL SURGE	
TANK	
field test results	E1-7
neid test results	
BALL VALVES	
closure effect	F1-7
BANGKOK WATER SUPPLY FACILITI	ES
transmission system	
power failures	B6-71
pumping station	B6-65
receiving structures	B6-65
	A5-44
BERGERON METHOD	10-44
BLOOD VESSELS see Pipes, elastic	
BUBBLE FLOW	C4-43
BUBBLE FORMATION	A1-4
	C4-44
	CITI
the second second	
CAVITATION	
bubble collapse	D2-22
cooling water systems	D3-37
evolution	D3-35
experimental work	C3-35
gas-liquid flow, in	C3-33
inception	D3-35
macrocavity formation	B7-79
regions	D2-21
shock waves	C4-43
vertical conduits, in	C3-33
BUTTERFLY VALVES	
closure effect	F1-7
CENTERED IMPLICIT METHOD	A1-3
	E1-8
CIRCULAR GATE VALVES	21-0
closure effect	F1 - 7
COLUMN SEPARATION	
acoustic wave speed estimation	A1-4
A	C2-18
aircraft fuel systems, in	
condensers, in	D1-3
	D2-21

digital computation mathematical model tank discharge, in test rig transient analysis valve boundary conditions COMPRESSIBILITY	C5-55 D3-35 F3-25 C2-18 C2-15 C4-43 C2-18
liquid COMPUTER AIDED DESIGN see also Computer Programs Computer Techniques	C1-4
Poatina hydroelectric system real pipe systems surge tanks	E5-74 B2-16 E2-21
COMPUTER PROGRAMS See also Computer Techniques Computer Aided Design	
complex pipe systems, for global	B2-15 A2-13 B1-7
heavy water sub-program insurge/outsurge computation light water sub-program method of characteristics	E3-45 E3-43 E3-45 A4-33 B2-13 B5-47 B6-68 C5-55 D1-3 E1-3 E4-61 E6-86
network simulation surge tank oscillations transient condition, prediction zooming feature COMPUTER TECHNIQUES see also Computer Programs	A2-16 E1-3 D3-40 A4-33
Computer Aided Design	C1-5 C2-21 C5-55
CONCORDE FUEL SYSTEM column separation pressure variations test rig valve boundary conditions CONDENSERS	C2-18 C2-18 C2-16 C2-18
column separation cooling water systems experimental work	D1-3 D2-21 D2-18 D2-22 D3-39
position, effect of COOLING WATER SYSTEMS cavitation circulating systems condensers	D3-39 D3-37 D1-5 D1-3 D3-35
pumping systems steam power plants	D1-5 D1-3 D3-35
thermal power stations transient simulation	C5-55 D2-18 D2-18
valve closure	D1-5

DISCHARGE TANKS	
design maximum over pressure operation siting sies determination	F3-26 F3-26 F3-25 F3-27 F3-26
size determination DRIVA POWER STATION (NORWAY)	G3-37
EMOSSON HYDROELECTRIC PROJECT	A2-18
FOURIER TRANSFORMATION frequency response analysis	G1-3
GAS-LIQUID FLOW cavitation region enthalpy calculations shock waves sudden valve closure	C3-33 C3-32 C1-3 C1-3
GLOBAL COMPUTER PROGRAMS see Computer Programs GLOBE VALVES closure effect	F1-7
HEADRACE TUNNEL SYSTEM HENDRINA POWER PLANT (S.AFRICA	
HORNBERGSTUFE-HOTZENWALDWER	
PUMPED STORAGE SYSTEM HYDROELECTRIC POWER STATIONS computer aided design	G1-6 E5-74
Driva power station (Norway) frequency response tests	G3-37
Jorundland power station (Norway) frequency response tests	G3-35
IMPEDANCE METHOD OF HYDRAULIC TRANSIENTS	
fluid column interaction	G4-48
JORDAN RIVER POWER PLANT JORUNDLAND POWER STATION	E4-59
(NORWAY)	G3-35
LEITZACH II SURGE TANK field test results	E1-7
MARCHING INTEGRATION METHOD flow build-up	
non-Newtonian fluids MASS OSCILLATIONS	B3-25
air cushion surge chamber stability mathematical analysis method of characteristics surge tanks, in	G2-20 E2-19 E1-3 A6-56 E1-3 E2-17
MATHEMATICAL MODELS column separation conduit simulation conservation laws method of characteristics three-phase flow	D3-35 E4-61 C4-44 E4-61 C4-43

METHOD OF CHARACTERISTICS complex pipe networks laminar flow steady oscillatory flow surge analysis	B2-13 A1-5 A1-5 B6-68 C5-55 D1-4 E6-86
surge tank oscillations theoretical basis unsteady flow wave propagation	E1-3 A7-84 E4-61 B5-47
NATURAL GAS SYSTEMS NEEDLE VALVES	A1-3
closure effect	F1-7
NON-NEWTONIAN FLUIDS pseudoplastic materials yield stress materials NON-WAVE ANALYSIS NUCLEAR REACTORS	B3-23 B3-23 A5-39
primary heat exchanger circuits NUMERICAL METHODS	A2-19
Generally; for specific methods see their own names, e.g. Method of Characteristics	under
global transfer matrix	G6-81
mass oscillation calculation, comparison of methods	A6-53
	E2-19
Heun-Romberg method	A6-59
predictor-corrector methods	A6-59
Runge-Kutta	A6-59
NYQUIST STABILITY CRITERION	04 51
valve and pipeline stability	G4-51
OIL PIPELINES	
oil hammer	D
experimental work	B4-33
pressure response	B4-35
straight pipes, in transfer matrix	B4-32
experimental work	B4-31
straight pipe	B4-35 B4-33
volume tank position, effect of	B4-35
OSCILLATION STABILITY	D4-00
general	G3-30
mathematical description	G2-18
method of small oscillations	G2-20
OSCILLATORY FLOW	
LaPlace Transformations	G3-27
PARAMETRIC INTEGRAL METHOD flow build up	
non-Newtonian fluids	B3-25
PENSTOCKS	E4-59
	E5-74
PIPES see also Oil Pipelines	
branched	DC 70
mathematical description	B6-70 G5-65
model tests periodic surges	G5-65 G5-68
conical	00-00
transfer matrices	G6-84
elastic	JU-UI
experimental work liquid filled	B5-53 B5-47

wave propagation in	B5-47
hydraulic impedance	G4-50
low head conduits	B7-79
networks	
low head	B7-79
computer analysis	B1-7
computer analysis	B2-15
C	
frequency response analysis	G1-3
natural mode analysis	G1-5
steady state behaviour	B1-7
transient behaviour	B1-8
parallel	
wave-propagation in	A7-87
stability	
Nyquist stability criterion	G4-51
transfer matrices	
conical pipe	G6-86
conical lossless pipe	G6-84
constant characteristics pipe	G6-83
cylindrical lossless pipe	G6-85
	G0-05
variable wave celerity/	00.00
diameter pipe	G6-86
varying cross-section	
wave-propagation in	A7-90
viscoelastic	
experimental work	B5-53
gas-filled	B5-49
wave propagation	B5-49
PIPE JUNCTIONS	
boundary conditions	B1-5
branched	G3-31
	00.01
	B6-70
mathematical description	B6-70
mathematical description transient analysis	A7-85
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA)	A7-85
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam	A7-85
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks	A7-85
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY	A7-85) E5-74
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on	A7-85
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS	A7-85) E5-74 C1-7
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on	A7-85) E5-74
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications	A7-85) E5-74 C1-7
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications	A7-85) E5-74 C1-7 E2-15
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk	A7-85) E5-74 C1-7 E2-15 E2-16
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany)	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B1-3
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B7-79 B1-3 D2-18
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B7-79 B1-3 D2-18 D1-6
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup stoppage	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18 F3-25
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup stoppage transient prediction	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18 F3-25
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup stoppage transient prediction RAREFACTION WAVES	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18 F3-25 A3-23
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup stoppage transient prediction RAREFACTION WAVES pump stoppage, caused by	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18 F3-25
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup stoppage transient prediction RAREFACTION WAVES pump stoppage, caused by RATIONAL HEAT TRANSFER	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18 F3-25 A3-23
mathematical description transient analysis POATINA DEVELOPMENT (TASMANIA) PRESSURISERS see Surge Tanks; steam surge tanks PSEODOVISCOSITY shock waves, effect on PUMPED STORAGE SYSTEMS advantages design implications Hornbergstufe-Hotzenwaldwerk Saeckingen (West Germany) surge tanks computer aided design PUMPS centrifugal characteristics cooling water systems, in failure macrocavity formation overpressures head-discharge curve rarefaction waves, in rundown speeds startup stoppage transient prediction RAREFACTION WAVES pump stoppage, caused by	A7-85) E5-74 C1-7 E2-15 E2-16 G1-6 G5-65 E2-21 D3-38 A3-21 D1-5 B7-79 B1-3 D2-18 D1-6 B6-72 D2-18 F3-25 A3-23

SAECKINGEN PUMPED STORAGE	SCHEME
model tests	
air chambers	G5-67
elastic deformation, water of	G5-65
Mach similarity	G5-65
surge tanks	G5-68
viscous energy dissipation	G5-67
SCHNYDER-BERGERON METHOD	E1-8
	E6-86
SHOCK ABSORBERS	A5-45
SHOCK WAVES	
bubble effects	C4-47
cavitation region	C4-47
pseudoviscosity, effect of	C1-7
sudden valve closure, result of	C1-3
SIPHONS	C5-56
SIFHONS	D2-19
SOUTHERN TUNNEL MAIN	D2-15
friction considerations	E6-87
model tests	E6-86
surge prediction	E6-85
SQUARE GATE VALVES	10-00
closure effect	F1-7
STEAM POWER PLANTS	E 1 = (
	D1-3
cooling water systems	D1-3 D3-35
ST.ETIENNE WATER DELIVERY	D2-22
SYSTEM	A2-18
STORM WATER DROPSHAFTS	A2-10
	C3-33
cavitation region	
outlet flow	C3-31
SURGE TANKS	
Apalachia differential tank	E1-7
boundary conditions	G3-30
computer aided design	E2-16
Gordon tank (Tasmania)	
air admission	E5-76
air release	E5-75
operating conditions	E5-76
system analysis	E5-76
Leitzach II tank	E1-7
mass oscillations, in	A6-56
	E1-3
	G2-17
load changes, causing	E2-16
mathematical description	B6-70
mathematical description model tests	G5-68
	E6-88
multiple shafts	
power failures	B6-71
steam surge tanks	
experimental work	E3-45
insurge problems	E3-40
outsurge problems	E3-42
weir crest levels	E6-89
THERMAL POWER STATIONS	
cooling water systems	C5-55
	D2-18
THREE PHASE FLOW	
mathematical model	C4-43
TURBINES	
guide vane effect	G3-33
head variation	G3-33
TWO-PHASE FLOW	
cavitation	C3-33
gas-liquid	C1-3
_	C3-31

VALVES	
ball valves	
closure	F1-7
boundary conditions	T, T = 1
Concorde fule systems	C2-18
numerical solution	C2-21
butterfly valves	02-21
closure	F1-7
circular gate valves	
closure	F1-7
closing	A5-43
0	B6-72
air-pocket volume, changes	C1-6
complex systems, in	C1-4
cooling water systems, in	D1-5
	D2-19
experimental work	D2-20
gas-liquid systems, in	C1-3
optimum closure	F1-8
pseudoviscosity	C1-7
shock waves	C1-3
surge prediction/control	F1-6
time	D2-23
globe valves	
closure	F1-7
mid-pipe vent	B1-6
needle valves	
closure	F1-7
opening	A5-44
pressure reducing characteristics	114 01
	E4-61
upstream/downstream head r'ship spring loaded relief type	B1-5
shring roaded retter the	

NA	ME	IND	EX

Duggins, R.K.

TO PAPERS, CONTRIBUT	IONS AND DISCUSSION	Enever, K. J.	A123; C1 ; C73; C74; C75; D56;
In this index, papers p	resented at the		F35
	Conference are denoted by bold print.		B6, B98, E101
on o donotod og .	Jora prime.	Eriksen,H.A. Erskine.J.B.	B93; D56; D58
Anderson, A.G.	C3: C79		200, 200, 200
Apelt, C. J.	B2 : B94: B95	Famili, J.	A131, C80
Atzeni, A.	D3	Fanelli, M. A.	A131; E95; G6;
Alzeni, A.	D2	Falletit, M. A.	G93; G100; G104
Deleners ff C	4.4 4.100	Terine T A	
Belonogoff, G.	A4; A129	Fox, J. A.	B1 ; B91; B92;
Boldy, A. P.	A123		B93; B98; C73;
Brekke, H.	A122; G3 ; G89;		C75; C80; C81;
	G104; G105; G107		C82; D56; E99
Buchanan, R. W.	E96; G106	Franke, P.	G5; G106; G107
Bullough, J. B. B.	A6; A130; A131		
		Gorman, D.J.	E3; E100; E101;
Cao, C.	D3		F37
Chaudhry, M. H.	A122; A131; C75;	Graze, H. R.	B98; C74; C76;
0.1	E4; E96; E101;		C78; D57; E100;
	G99: G101		F2; F35; F36;
Collins, T. M.	C74: C76		F37; G101; G105
	0.1, 0.0	Green, W. L.	G4
de Kluyver, J. P.	C5; C81; C84	Griffiths, P. T. A.	A130; D57; D58;
Donsky, B.		Quining, 1, 1, 11,	E5; E99; E102;
0	A124		
Driels, M.R.	C77		E103; G100

B3; B95; C75;

C78; G102

experimental work	G4-53
fluid column interaction	G4-48
model tests	E5-75
prototype tests	E5-75
stability	G4-49
square gate valves	
closure	F1-7
VALVE STROKING	A1-5
	F1-6
VERTICAL CONDUITS	
cavitation region	C3-33
head-discharge r'ship	C3-32
shock front	C3-34
test rig	C3-35
WAVE PROPAGATION	
elastic pipes, in	B5-49
mathematical analysis	
linear system	B5-51
non-linear system	B5-52
piston problem	B5-53
one-dimensional	B5-45
parallel pipes, in	A7-87
pipes with varying cross-	
sectional area	A7-90
viscoelastic pipes, in	B5-49
WAVE SPEED	
variability	B1-7
WEIRS	
crest level	E6-89
dimensional effects	E6-89

G4-48

G4-48

E6-89

E3; E100; E101

chatter

spillage

dynamics

Gupta, R.K.

Hack, H. P. Haindl, K.

Ichikawa, T.

Jones, S. E.

Kaplan, M. Kranenburg, C.

Levy, J. V. Logan, T. H. Longman, A. D. Lorenz, J.

Lupton, H. R.

Macagno, E.O.

Macagno, M. Martin, C. S.

Novak, P.

Piga, E. Portfors, E.A.

Recoura, J. Robbie, J. F.

Robson, F. M.

Safwat, H. H.

G1; G99; G100 B7; B99; B100; G102

B4

A4; A129 C4; C70; C80; C81

F1; F34

E6 A125 E95; E100 B5; B96; B97; C78 B95 A5; A129; A131; A120; C79; E96 A5; A129 A121; B91; B96; C73; C82; E1; E96; E97; E98 A121; E96; E101; G106 D3

E4; E101
A2; A122; A123
A6; A130; A131;
E2: E99; E100
E2; E99; E100

A121; A129; B93; B97; **C5**; C77; C81; C84; **D2**;

D58; E100; F34;

Smith, B. Stefan, H. Stephenson, D. Strawson, H. Streeter, V. L. Svee, R. Swaffield, J. A. Tekle, T. Thirriot, C. Thomas, G. O. Thorley, A. R. D. Vaidyaraman, P. P. Van Aarle, L. G. M.

Schreck, C. W.

Schroder, R.

Sheer, T.J.

Wentworth, R. C. Wood, D. J. Wood, G. D.

Yamaguchi,K. Young,G.A.J.

Zaoui, J.

Zeller,H. Zielke,W.

A130; E99 G5; G106; G107 B92; D1; D55; D56; D57 D56; F36 G5; G106; G107 A128; F3 A122 A1; A121; A122; B92; D55; F34 G2; G100; G101; G102; G104 C2; B92; B93; C76; C77; C78; C80; C82 F36 A7 A3; A123; A124; A127; A128 B96 C3; C79 B93

A4; A129 F1; F34 A129; G4

B4 C73; C77; C81

A2; A122; A123; A129 B5; B96; B97 B94; G1; G99; G100; G107

LIST OF DELEGATES

ATTENDANCE LIST BY NAME OF DELEGATE

G107

ANDERSSON S. Archer K.E.	ATOMENERGI AB English Electric co.	SWEDEN U.K.
ATZENI A.	CAGLIARI UNIVERSITY	ITALY
BLUNKETT A.G.F. BOLDY A.P. BREKKE H. BRETT A. BROWN T.R. BROWN V.P.R. BROWN V.P.R. BROWNELL C.D. BUCHANAN R.W.	MINERAL TECHNOLOGICAL INSTITUTF MEDWAY PORTS AUTHORITY MEPZ & MCLELLAN KVAERNEP BRUG A/S LUCAS AEROSPACE LTD. RENDEL,PALMER & TRITTON BRITISH PETPOLEUM CO.LTD. TASMANIA UNIVERSITY WILLIAMSON,J., & PARTNERS ABERDEEN UNIVERSITY	U.K. NDFW4Y U.K. U.K. AUSTPALIA U.K.
CHAUDHRY M.H.	CAGLIAPI UNIVERSITY T.A.M.S. Int'l power & engng.consultants Central Electricity research Labs.	CANADA
DAVIS R.D. DEEN D. DEXTER A.L. DRIELS M.R. DUGGINS R.K.	ROYAL NAVAL ENGINEERING COLLEGF Metropolitan water board Trinity College,Durlin City university Nottingham university	n.k. n.k. fibe n.k.

EGGEPSTEDT R. BRAN & LUEBBE(G.B.)LTD. HOPNE ENGINEERING CO. NYBRO HANSEN SIVILINGENIOR ELLIASSON F.T. ELSTAD I.K. ENEVER K.J. CITY UNIVERSITY ENSIGN H.W. CLA-VAL COMPANY CAMP, DRESSER & MCKEE ERIKSEN H.A. ERSKINF J.R. I.C.I.LTD. (AGRIC.DIV.) VARLEY-FMC LTD. ETHERIDGE P. FAMILI J. TRANTAN OIL SERVICES LTD. CENTRAL ELECTRICITY RESEARCH LABS. FANELLI M. FOX J.A. FRANKE P.F. FRANKLIN T.F GARDNER G.C. AFG-KERNREAKTOREN GAST P. WATERMEYER, LEGGE, PIESOLD & UHLMANN GILL R.D. OTTAWA UNIVERSITY OMNIUM TECH.TRANSPORTS PAR PIPELINES MELBOURNE UNIVERSITY GORMAN D.J. GRASSIN F. GRAZE H.R. TASMANIA HYDRO-ELECTRIC COMMISSION GRIFFITHS P.T.A. GUNSTAD T.S-E. SWEDISH STATE POWER BOARD HARPER R.F. CLA-VAL COMPANY METROPOLITAN WATER BOARD HARRIES J.M. KENNEDY & DONKIN HEADLAND H. HOPKINS P.M. HOWARD B. HUGHES T.D.J. NATIONAL COAL BOARD STENBERG-FLYGT AB BATH CORPORATION WATER DEPT. NATIONAL ENGINEERING LAB. HUNTER J.J. RHEINLAND TECH. UBERWACHUNGS-VEREIN JAEGER A. NORTH SCOTLAND HYDRD-ELECTRIC BOARD ELECTRICITE DE FRANCE JARVIS R.M. JOLAS C. PACIFIC INT'L. COMPUTING CORP. DELFT UNIVERSITY TECHNOLOGY KAPLAN M. KRANENBERG C. SIGMUND PULSOMETER PUMPS LTD. LAKE G. LAWMAN R.A. JAMES, R.T., & PARTNERS METROPOLITAN WATER BOARD LEVY J.V. LOCHEAD A.C. IRAQ PETROLEUM CO.LTD. KENNEDY & DONKIN AACHEN TECH.UNIVERSITY BINNIE AND PARTNERS CONSULTANT LONGMAN A.D. LORENZ J LUPTON A.R. LUPTON H.R. IOWA UNIVERSITY MACAGNO E.O. IOWA UNIVERSITY WEIR PUMPS LTD. MACAGNO M.C. MALLEY G. GEORGIA INST.OF TECHNOLOGY MATHER & PLATT LTD. MARTIN C.S. MASSEY I.C. MATTHEWS R.V. BOVING & CO.LTD. CENTRAL ELECTRICITY GENERATING BOARD BOVING & CO.LTD. MAWER W.T. MCHAMISH G. WEIR PUMPS LTD. BHRA FLUID ENGINEERING MCLEOD F. MILLER D. MULLER P. BROWN BOVERI & CIE AG NOVAK P. NEWCASTLE-UPON-TYNE UNIVERSITY PERKINS N.C. BRISTOL WATERWORKS CO. GIBB,SIR A., & PARTNERS ABFRDEEN UNIVERSITY ABFRDEEN UNIVERSITY BHRA FLUID ENGINEERING REES J.G. ROBRIE J.F. ROBSON F.M. ROWAT M.J. DELFT UNIVERSITY TECHNOLOGY SAFWAT H.H. DELFT UNIVERSITY TECHNOLOGY VER.OSTERR.EISEN-& STAHLWERKE &G BERLIN TECH.UNIVERSITY ELECTRICITY SUPPLY COMMISSION HYDRAULIC ANALYSIS.LEEDS SHELL INTERNATIONAL PETROLFUM CO.LTD. BHRA FLUID ENGINEERING STEWART, SVIRIDOV & OLIVER C. PROJECTITO SATTLER H. SCHRECK C.S. SHEER T.J. SMITH R. . SPENCER D.R. STEPHENS H. STEPHENSON D. C.J.B. (PROJECTS)LTO. SHELL RESEARCH LTO. MICHIGAN UNIVERSITY NORWAY TECH.UNIVERSITY SOUTH BANK POLYTECHNIC STEWART N.J. STRAWSON H. STREETER V.L. SVEE R. SWAFFIELD J.A. TEKLE NOPWAY TECH, UNIVERSITY TOULOUSE INST.NAT.POLYTECHNIC BUREAU OF RECLAMATION THIRRIOT C. THOMAS G.O. THORLEY A.R.D. TOFT-FFNSVIG A. CITY UNIVERSITY DENMARK TECH. UNIVERSITY COLORADU STATE UNIVERSITY TULLIS J.P. KONINKLIJKE SHELL LAB. VMF/STORK WERKSPOOR VAN AARLE L.G.M. VAN DALEN G.

U.K. υ.к. NORWAY U.K. U.S.A THAILAND U.K. U.K. υ.к. ITAL Y U.K. GERMAN FED.REP. UK U.K. GERMAN FED. REP. U.K. CANADA FRANCE AUSTRALIA AUSTRAL 1A SWEDEN U.S.A. υ.к. U.K. υ.κ. SWEDEN U.K. υ.к. GERMAN FED.REP. U.K. FRANCE U.S.A. NETHERLANDS U.K. U.K. U.K. U.K. U.K. GERMAN FED.REP. U.K. U.F. U.S.A. U.S.A. U.K. U.S.A. U.K. U.K. U.K. υ.к. U.K. GERMAN FED.REP. U.K. U.K. U.K. U.K. U.K. U.K. NETHERLANDS AUSTRIA GERMAN FED.REP. S.AFRICA U.K. U.K. U.K. RHODESIA U.K. U.K. U.S.A. NORWAY U.K. NORWAY FRANCE U.S.A. U.K. DENMARK U.S.A. NETHERLANDS NETHERLANDS

MADSWORTH E.T.	IRAQ PETROLEUM CO.LTD.	U.K.
Waller H.	Sulzer bros.	SWITZERLAND
Wood G.D.	Salford University	U.K.
YOUNG G.A.J.	BHRA FLUID ENGINEERING	υ.κ.
ZADUI J.	SOGREAH	FRANCE
Zeller H.	Aachen tech.University	German féd.rep.
Zielke W.	Munich tech.University	German féd.rep.

ATTENDANCE LIST BY NAME OF COMPANY

_			
	AACHEN TECH. UNIVERSITY	GERMAN FED.REP.	LOPENZ J.
	ABERDEEN UNIVERSITY	υ.κ.	ZELLER H. BULLOUGH J.B.B.
	RENDEEN ONIVERSITE	0.8.	POBBIE J.F.
			ROBSON F.M.
			GAST P. ANDERSSON S.
	ATOMENERGI AB Bath corporation water dept.	SHEDEN	HUGHES T.D.J.
	BERLIN TECH. UNIVERSITY	GERMAN FED.REP	FRANKE P.F.
			SCHRECK C.S.
	BHRA FLUID ENGINEERING		MILLER D. Rowat M.J.
			STEPHENS H.
			YOUNG G.A.J.
		U.K.	LUPTON A.R. MATTHEWS R.V.
	BOVING & CO.LTD.	υ.κ.	MCHAMISH G.
			EGGERSTEDT R.
	BRISTOL WATERWORKS CO.	U.K.	PERKINS N.C. Brown V.R.R.
	BRISTOL WATERWORKS CO. BRITISH PETROLEUM CO.LTD. BROWN ROVERI & CIE AG		MULLER P.
	BUREAU OF RECLAMATION	U.S.A.	THOMAS G.D.
	BUREAU OF RECLAMATION C.J.B.(PROJECTS)LTD.	V	STEWART N.J.
	CAGLIARI UNIVERSITY	ITALY	ATZENI A. CAD C.
	CAMP, DRESSER & MCKEE	THAILAND	ERIKSEN H.A.
		U.K.	MAWER W.T.
	CENTRAL ELECTRICITY RESEARCH LABS.	U.K.	COLLINS T.M.
	CITY UNIVERSITY	U.K.	GARDNER G.C. DRIELS M.R.
	CITY UNIVERSITY	U.K.	ENEVER K.J.
			THORLEY A.R.D.
	CLA-VAL COMPANY	U.S.A.	ENSIGN H.W. HARPER R.F.
	COLORADO STATE UNIVERSITY		TULLIS J.P.
	CONSULTANT		LUPTON H.R.
	DELFT UNIVERSITY TECHNOLOGY		KPANENBERG C.
		05444.04	SAFWAT H.H. TOFT-FENSVIG A.
	DENMARK TECH. UNIVERSITY E.N.E.L.	DENMARK ITALY	FANELLI M.
		FRANCE	JOLAS C.
	ELECTRICITY SUPPLY COMMISSION		SHEER T.J.
	ENGLISH ELECTRIC CO.	U.K. U.S.A.	ARCHER K.E. MARTIN C.S.
	GEORGIA INST. OF TECHNOLOGY GIBB, SIR A., & PARTNERS	U.K.	REES J.G.
	HORNE ENGINEERING CO.	U.K.	ELLIASSON E.T.
	HYDRAULIC ANALYSIS, LEEDS	Ο.κ.	SMITH B.
	I.C.I.LTD. (AGRIC.DIV.) INT'L POWER & ENGNG.CONSULTANTS	U.K. CANADA	ERSKINE J.B. Chaudhry M.H.
	IOWA UNIVERSITY		MACAGNO E.O.
			MACAGNO M.C.
	IRANIAN OIL SERVICES LTD.		FAMILI J. LOCHEAD A.C.
	IRAQ PETROLEUM CO.LTD.	U.K.	WADSWORTH E.T.
	JAMES, R.T., & PARTNERS	U.K.	LAWMAN R.A.
	KENNEDY & DONKIN	U.K.	HEADLAND H.
	KONINKLIJKE SHELL LAB.	NETHERLANDS	LONGMAN A.D. Van Aarle L.G.M.
	KVAERNER BRUG A/S	NORWAY	BREKKE H.
	LEEDS UNIVERSITY	NORWAY U.K.	FOX J.A.
	LUCAS AEROSPACE LTD.	U.K.	BRETT A. MASSEY I.C.
	MATHER & PLATT LTD.	U.K. U.K.	BLUNKETT A.G.F.
	MEDWAY PORTS AUTHORITY	AUSTRALIA	GRAZE H.R.
	MERZ & MCLELLAN	υ.κ.	BOLDY A.P.
	METROPOLITAN WATER BOARD	Ο.κ.	HARRIES J.M. DEEN D.
			LEVY J.V.
	MICHIGAN UNIVERSITY	U.S.A.	STREETER V.L.
	MINERAL TECHNOLOGICAL INSTITUTE	NETHERLANDS	BINKHUYSEN J.P.F.
	MUNICH TECH. UNIVERSITY	GERMAN FED.REP.	ZIELKE W.
	NATIONAL COAL BOARD NATIONAL ENGINEERING LAB.	U.K. U.K.	HOPKINS P.M. HUNTER J.J.
	NEWCASTLE-UPON-TYNE UNIVERSITY	U.K.	NOVAK P.
	NORTH SCOTLAND HYDRO-ELECTRIC BDARD	U.K.	JARVIS R.M.
	NORWAY TECH. UNIVERSITY	NORWAY	SVEE R. Tekle T.
	NOTTINGHAM UNIVERSITY	υ.κ.	DUGGINS R.K.
	NYBRO HANSEN SIVILINGENIOR	NORWAY	ELSTAD I.K.
	OWNIUM TECH. TRANSPORTS PAR PIPELINES	FRANCE	GRASSIN F.

```
OTTAWA UNIVERSITY

PACIFIC INT'L. COMPUTING CORP.

RENDEL,PALMER & TRITTON

RHEINLAD TECH.UBERWACHUNGS-VEREIN

ROYAL NAVAL ENGINEERING COLLEGE

SALFORD UNIVERSITY

SANDFORD FAWCETT, WALTON & GELL

SHELL INTERNATIONAL PETROLEUM CO.LTD.

SHELL INTERNATIONAL PETROLEUM CO.LTD.

SHELL INTERNATIONAL PETROLEUM CO.LTD.

SHELL RESEARCH LTD.

SIGMUND PULSOMETER PUMPS LTD.

SOGREAH

SOUTH BANK POLYTECHNIC

STENBERG-FLYGT AB

STEWART,SVIRIDOV & OLIVER

SULZER BROS.

SWEDISH STATE POWER BOARD

T.A.M.S.

TASMANIA HYDRO-ELECTRIC COMMISSION

TASMANIA UNIVERSITY

TOULOUSE INST.NAT.POLYTECHNIC

TRINITY COLLEGE,DUBLIN

VARLEY-FMC LTD.

VER.OSTERR.EISEN-& STAHLWERKE AG

VMF/STORK WERKSPOOR

NATERMEYER.LEGGE.PIESOLD & UHLMANN

WEIR PUMPS LTD.

WILLIAMSON,J., & PARTNERS
```

```
CANADA
U.S.A.
U. K.
GERMAN FED. REP.
U.K.
U.K.
U.K.
U.K.
U.K.
U K
FRANCE
IL K
SWEDEN
RHODESTA
SWITZERLAND
SWEDEN
U.S.A.
AUSTRALIA
AUSTRALIA
FRANCE
EIRE
U.K.
AUSTRIA
NETHERI ANDS
U.K.
U.K.
```

```
U.K.
```

ATTENDANCE LIST BY COUNTRY

```
AUSTRALIA
    MELBOURNE UNIVERSITY
TASMANIA HYDRO-ELECTRIC COMMISSION
TASMANIA UNIVERSITY
AUSTRIA
    VER.OSTERR.EISEN-& STAHLWERKE AG
CANADA
    INT'L POWER & ENGNG. CONSULTANTS
    OTTAWA UNIVERSITY
DENMARK
DENMARK TECH. UNIVERSITY
EIRE
    TRINITY COLLEGE, DUBLIN
FRANCE
    ELECTRICITE DE FRANCE
    OMNIUM TECH. TRANSPORTS PAR PIPELINES
    SOGREAH
    TOULOUSE INST.NAT.POLYTECHNIC
GERMAN FED.R
    AACHEN TECH, UNIVERSITY
    AEG-KERNREAKTOREN
    BERLIN TECH. UNIVERSITY
    BROWN BOVERI & CIE AG
MUNICH TECH.UNIVERSITY
RHEINLAND TECH.UBERWACHUNGS-VEREIN
ITALY
    CAGLIARI UNIVERSITY
    E.N.E.L.
NETHERLANDS
    DELFT UNIVERSITY TECHNOLOGY
    KONINKLIJKE SHELL LAB.
MINERAL TECHNOLOGICAL INSTITUTE
    VMF/STORK WERKSPOOR
NORWAY
    KVAERNER BRUG A/S
    NORWAY TECH. UNIVERSITY
    NYBRO HANSEN SIVILINGENIOR
RHODESIA
    STEWART, SVIRIDOV & OLIVER
S. AFRICA
    ELECTRICITY SUPPLY COMMISSION
SWEDEN
    ATOMENERGI AB
STENBERG-FLYGT AB
    SWEDISH STATE POWER BOARD
SWITZERLAND
    SULZER BROS.
THAILAND
    CAMP, DRESSER & MCKEE
U.K.
    ABERDEEN UNIVERSITY
```

BATH CORPORATION WATER DEPT. BHRA FLUID ENGINEERING

GORMAN D.J. KAPLAN M. BROWN T.R. JAEGER A. DAVIS R.D. WOOD G.D. FRANKLIN T.F. SPENCER D.R. STRAWSON H. LAKE G ZAOUL J. SWAFFIELD J.A. HOWARD B. STEPHENSON D. WALLER H. GUNSTAD T.S-E. CATALDO J. GRIFFITHS P.T.A. BROWNELL C.D. THIRRIOT C. DEXTER A.L ETHERIDGE R. SATTLER H. VAN DALEN G. GILL R.D. MALLEY G. MCLEOD F. BUCHANAN R.W.

GRAZE H.R. GRIFFITHS P.T.A. BROWNELL C.D.

SATTLER H.

CHAUDHRY M.H. Gorman D.J.

TOFT-FENSVIG A.

DEXTER A.L.

JOLAS C. GRASSIN F. ZAOUI J. THIRRINT C.

LORENZ J ZELLER H. GAST P. FRANKE P.F. SCHRECK C.S. MULLER P. ZIELKE W. JAFGER A.

ATZÉNI A. CAD C. FANELLI M.

KRANENBERG C. SAFWAT H.H. VAN AARLE L.G.M. BINKHUYSEN J.P.F. VAN DALEN G.

BREKKE H. SVEE R. TEKLE T. ELSTAD I.K.

STEPHENSON D.

SHEER T.J.

ANDERSSON S. HOWARD B. GUNSTAD T.S-E.

WALLER H.

ERIKSEN H.A.

BULLOUGH J.B.B. ROBBIE J.F. RORSON F.M. HUGHES T.D.J. MILLER D. ROWAT N.J. STEPHENS H. YOUNG G.A.J. HORNE ENGINEERING CO. HYDRAULIC ANALYSIS,LEEDS I.C.I.LTD.(AGRIC.DIV.) IRANIAN OIL SERVICES LTD. IRAQ PETROLEUM CO.LTD.

JAMES,R.T., & PARTNERS KENNEDY & DONKIN

LEEDS UNIVERSITY LUCAS AEROSPACE LTD. MATHER & PLATT LTD. MEDWAY PORTS AUTHORITY MERZ & MCLELLAN METROPOLITAN WATER BOARD

NATIONAL COAL BOARD NATIONAL ENGINEERING LAB. NEWCASTLE-UPON-TYNE UNIVERSITY NORTH SCOTLAND HYDRO-ELECTRIC BOARD NOTTINGHAM UNIVERSITY RENDEL,PALMER & TRITTON ROYAL NAVAL ENGINEERING COLLEGE SALFORD UNIVERSITY SANDGOOD UNIVERSITY SANDGOOD FANICETT, WILTON & GELL SHELL INTERNATIONAL PETROLEUM CO.LTD. SHELL RESEARCH LTD. SIGMUND PULSOMETER PUMPS LTD. SOUTH BANK POLYTECHNIC VARLEY-FMC LTD. WATERMEYER,LEGGE,PIESOLD & UHLMANN WEIR PUMPS LTD.

WILLIAMSON, J., & PARTNERS

U.S.A. BUREAU OF RECLAMATION CLA-VAL COMPANY

> COLORADO STATE UNIVERSITY GEORGIA INST.OF TECHNOLOGY IOWA UNIVERSITY

MICHIGAN UNIVERSITY PACIFIC INT'L. COMPUTING CORP. T.A.M.S. BINNIE AND PARTNERS BOVING & CO.LTD.

BRAN & LUEBBE(G.B.)LTD.

BRISTOL WATERWORKS CO. BRITISH PETROLEUM CO.LTD. C.J.B.(PROJECTS)LTD. CENTRAL ELECTRICITY GENERATING BOARD CENTRAL ELECTRICITY RESEARCH LABS.

CITY UNIVERSITY

CONSULTANT ENGLISH ELECTRIC CO. GIBB,SIR A., & PARTNERS ELLIASSON E.T. SMITH B. ERSKINF J.B. FAMILI J. LOCHEAD A.C. WADSWORTH E.T. LAWMAN R.A. HEADLAND H. 1 ONGMAN A.D. LONGMAN A.U. FOX J.A. BRETT A. MASSEY I.C. BLUNKETT A.G.F. BOLDY A.P. HARRIE S.J.M. DEEN D. LEVY J.V. HOPKINS P.M. HUNTER J.J. NOVAK P. JARVIS R.M. DUGGINS R.K. BROWN T.R. DAVIS R.D. WOOD G.D. FRANKLIN T.F. SPENCER D.R. STRAWSON H. LAKE G. SWAFFIELD J.A. ETHERINGE R. GILL R.D. MALLEY G. MCLEOD F. BUCHANAN R.W. THOMAS G.O.

HANGIN H.W. HARPER R.F. TULLIS J.P. MARTIN C.S. MACAGNO M.C. STREETER V.L. KAPLAN M. CATALDO J. LUPTON A.R. MATTHEWS R.V. MCHAMISH G. EGGERSTEDT R. PERKINS N.C.

BROWN V.R.R. STEWART N.J. MAWER W.T. COILINS T.M. GARDNER G.C. DRIELS M.R. ENFVER K.J. THORLEY A.R.D. LUPTON H.R. ARCHER K.E. REES J.G.